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Abstract

A systematicprocedureforconsn'uctin8semi-discretef_es of2m.I orderaccurate,2m

orderdissipative,variation_'g, 2m+ 1 pointband width,conservationform approxima-

t/onsto scalar_-nservationlawsispresented.Here m isany integerbetween2 and 8. Simple

f'u'storderforwardtimediscretization,usedtogetherwithany oftheseappro_rnAtionstothe

spacederivatives,alsoresults in a fullydiscrete,variationdiminishingalgorithm.These schemes

&U usesimplefluxlimiters,withoutwhich eachofthesefullydis_ctealgorithrr_iseven linearly

unstable.F_xt_ions tosystems,usinga nonlinearfield.by.fielddecompositionarepresented,and

shown tohave many of thesame propertiesasinthescalarcase.For linearsystems,thesenon-

_ear approximationsarevariationdiminishing,and henceconvergent.A new and generalcri-

terionforapproximationstobe variation dim/nishm"g is also given. Finally,numericalexperiments

using some of these algorithms are presented.



Incroduc_n

Recently there has been an enormous amotmt of activity related to the construction and

analysisof "highresolution"schemesapproximatinghyp_bollcsystemsof conservationlaws.

Some sarnplesofthesucctssfulconsequence,ofthisactivitycan be foundinthepr_ of

thesixthAIAA ComputationalFluidDynamics Conference[3],[17],[31].Extensivebibliogra-

phiescan alsobe foundinthesepapers.

Ore"aim hereisto extendtheuse ofthesemethods by making them even more accurate.

We shallgivea systematicprocedureforcom_g senti-discreteapproximationstoscalarcom.

servationlaws. Exceptforisolatedcriticalparts,theseschemeswillhave 2m-I orderecct_racy,2rn

orclerdissipation,and a bandwidthusing2m+ 1 points,for m any integerbetween two and eight.

They areinconservationform and TVD -thevariationofthediscretesolutionisnon-itmreasingin

_me. Hence,nc _F._riousoscillationsarepossible.

The highresolutionschemesconsm_ed earlier[13],[21],[28]use fivepoints(m = 2),

and have secondorderaccuracy.Some of thesewere proventosatisfya singleentropyinequality

and henceto be convergentwhen f(q) in(I.I)below isconvex[20],[21].Itispossiblethatthe

Fie_wiseparabolicmethod of Woodward and ColeIla[7],isthirdorderaccurate,and sharessome

ofthepropertiesdiscussedherewhen m = 2.

In aparallelwork [4],we shallextendtheconstructionbelow for m = 2,inorderto

approximatesystemsof conservationlawsinmulti.dimen.sions,usingtriangle-basedalgorithm.s.

Thatwork stressesthecomputationalaspectsofthealgorithms,especiallyastheyrelatetothe

Eulerequationsofcompressiblegasdynamics.

ConventionalschemessuchasLax-Wench'offevenwithan entropyfLx[16]seem tolacka

variationbound,althoughtheconvergenceofthismethod forscalarconvex f(q) can now be

proved(DiPerna,privatecommunication).From a practicalpointof view,thislackof a variation
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bound seems toleadto a lackofrobustnesswhen computingcomplex flowswithstrongshock

waves and steepgradients.

Another drawback of most fmJte.dif.ference schemes is that discontinuities are aplm'oxh'nated

by discretetransitions,thatwhen narrow,usuaUyovershootorundershoot,orwhen monotone,

usually spread the discontinuity over many grid points.

Upwind schemeshave been designed and used over the years, largely because of their suc-

cess in treating this difficulty. Those based on solving the Riernann problem either exactly

Godunov's method [9] or approximately, e.g. (Osher's [18], or Poe's [23] with an entropy fix [24],

[4]),have been extremelysuccessful,especiallywhen put ina second.orderaccurate,highresolu-

tionframework, e.g. C3],[17], C31].

We shouldparticularlymentiontheearlyinvestigationsofvan Leer [28],[29].There he

intr_ theconceptsof fluxlimiters,and higherorderRiemann solvers.RecentlyHarten [13],

usingan argument alsousedin[i]and elsewhere,obtainedsuffidentconditionswhich he showed

to be compatible with second order accuracy, and which guarantee that a scalar one-dimensional

approximation is TVD- total variation diminishing. He constructed a scheme having that pro-

perry and formally emended it to systems, using a field-by- field lJmiter, and Roe's decomposition.

We would also like to mention the work of Boris and Book [34], and Zalesak [32], conc=_.

ing FCT schemes. They used flux limiters to supress oscillations in thei_ schemes.

Harten's construction in [13] was done first for a fully discrete, explicit in time approxzma.

tion.P. Sweby [26]has investigatedthepropertiesofvariouslim/tersinthiscontext.We shall

notuse Sweby'sideasheresincewe seekhigherorderaccuracy,and hisSyTametryrestriction

would make our approxamationsonlysecondorder accurateinthesemi-discretecontext.

We shallusethe now-introducedterm "highresolutionscheme"tomean a formalextension

to systemsviaa field-by-fielddecomposition,ofa scalar,higherthanf'trstorderaccurate,variation
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diminishingscheme. These schemesdo not,ingenera],satis_]the entropy condition - e.g. expan-

sion shocksexistasstablesolutionsof high resolution schemes based on Roe's(unmodified)

scheme. In [21]we usedG.d_t'sdecomposit/onand certainlimiterstoprove thatlimitsolutions

of a class of second order aocu_ate high resolution schemes do satisfy ",heentropy condition for

hyperbolic systems of conservation laws. We alsoproved convergence of another class of high

resolution approximations to scalar convex conservation laws in [20] as well as in [21]. We believe

that the ideas concerning the entropy condition in these two papers can be extended to the high

orderaccurateschemesconstntctedin'.hefollowingsections,butwe do not attemptthishere.

The interestedreadermightalsoconsidertheremarkson entropyfixesin[4],[19]and [16].

The high-orderaccurate TVD schemes arefu-st obtainedhereforsemi-discrete(continuous

intime)approximations,and can thusserveasa guidelinefora wide varietyoftimediscretiza-

tions,bothimplidtand explidt.See [2]foreffiaentimplidtcalculationsapproximatingEuler's

equationsintransonicand supersonicaeronautics.TVD schemesalsohave a certaindiagonal

dominance thatisveryusefulinimplidtmethods [2],[12],

An interestingand usefulfactconcerningtimediscretizauonisthefollowing(mentionedin

Theorems (3.1)and (3.2)below). Allofthesemi-discreteappro_m-nationsconstructedbelow are

unconditionally(evenlinearly)unstablewhen (a)theyareusedtogetherwithsimplefirstorder

accurateforwardEulertimediscretizations,and Co)thefluxlirnitersareremoved. However, they.

areallconditionallystablewhen thelimiters,which enforcethevariationbound,arekept. Thus,

although the limiters might not act at all on a resulting steady state solution, ",hey act non-linearly

duringtransientcalculationstoenforcethevariationbound. Thiselementary_ae differencingis

sometimes useful, e.g. when steady state calculations on coarse grids are to be obtainedsimply.

Goodman and Leveque have recently shown [10] that two space dimensional scalar approxi-

mations cannot be TVD and still be more than f'trst order accurate, given that the associated flux
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functionsarereasonablysmooth. Neverthelesstwo dimensionalsdmmes basedon dimem/on by

dimensionTV'D differencinghave worked quitewell,evenforcomplexconfigurationswithvery

strongshocks.See e.g.[3],[5],[7].Inparticular,itseems thatour remark inthepredous para-

graph aboutconditionalstabilityofELderforwardtimediscretizationisalsoexperimentallyvalid

here. Perhapsa more sophisticated,scheme dependent,notionofvariationisneededforthe

theoryinseveralspac_dimensions.

The formatofthispaperisasfollows.InsectionI,we reviewtherelevanttheoryof weak

solutionsofconservationlawsand theirapprox/rnations.In sectionIt.we exemplifyour general

theoryby consu'uc_g familiesofsecondand thirdorderaccurateTVD schemesusingfivepoints.

InsectionIt],we perform thegeneralcons_on forscalarconservationlawsand state

Theorems (3.I)and (3.2)wh/ch containthemain resultsofthispaper. InsectionIV we provethe

theorems.In sectionV we obtainan apparentlynew and generalcriterionforan approximation

tobe TVD, which we hope willbe useful.In sectionVI we extendour cons_on tohighreso-

lutionschemesapproximatingsystems.SectionVII containssome numericalevidencedemonstrat-

Lugtheutilityof thesemethods. Many more experimentalresultsaregivenin[5].
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L Rev_,w of Theory of Weak $oluao_ and their Appr_ns

We shall consider num_.'cal appr_imatiom to the initial value problem for nonlinear hyper-

bolic systems of conservation laws.

8
o_g.at+ "_xf(q) = o, t > o, -I s x < I

with perioc_c boundary conditiom:

(I.I)

q(x+l,t) - q(x,O,

Oven imtial co_tiom q(x,O).

q(x,t) is an re.vector of unknowns, and the flux function f(q) is vector-valued, hay.

ing m components. The system is hyperbolic when the Jacobian matrix has real eigenvalues.

It is wen.known that solutions of (1.1) may develop discontinuities in finite time, even when

the initial clam are smooth. B.eca_e of this, we seek a weak solution of (1.1).

These weak solu_om are not nece_y unique. For physical _, the limR of the

viscous equation, as viscosity tends to zero is sou_,sht. This leads to an infinite family of inequali-

ties in the scalar case which when satisfied by so-called "entropy" solu_ons to (1.1) yield wen.

posedness in L 1 of the evolution problem. This resuit is due to Kn_ov [15].

For systems of equations, Lax has _.fmed an entrop7 inequality using an entropy function

[35]. The entropy inequality satisfied by "entropy" solutions to systems has an important

geometric consequence concerning _m.i_ble discontinuities.

This theory is quite weU developed and often reviewed, see e.g. [19], section H. One new

result is the foRo'_-!rig; in the scalar convex case, a single entropy inequality is equivalent to the

required infinite number, if the solution is of bounded variation. (See [8].) This fact was cruaal

to the convergence results in [20] and [21].
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Next we consider a semi-discrete, method of lines, g_xrj_=ation to (1.1). We break the

interval (-1,1) into subinterv_:

Is = {x/(j-2)Ax "_ x < (j+2)Ax}

j = O,±I,...,_V, with (2N+I)_u_ = 2

.=j= j_, ,_=t_,=,= o_==uint=.,,alzj,,_th,=dpomt__--}'_r-_-"

Define the step function for each t > 0, as

QA.(x,O= q}O,

for x _ lj.

The initial data is discretized via the averaging operator r=z,

r=,q(x,o) = --_ f tqo(,,o)cb = qs(o), for x _ 1s

For any step function, we define the difference operators

1

A method of lines, conservation form, _tion of (1.1), is a system of differential

equations

"_ql + D÷ -_ ffi O, j ffi O,±I,...,±N.
(1.2)

Q=(x,o)= r_,q(x,o) forx _ ls

-6-



Here,the numerical flux defined by:

for k>1,

-__ =/(qj._-: .... .q/__), (1.3)

is a Lip_hi= continuous function of its ergumen_, satisfying the consistency oondi.

tion:

l(q,q,...,q) =/(q)

It L_weU known tJlat bounded a.e. limit3 as _z - O, of approximaze solutionsc_averge to

weak solutions of (1.1). This does not n_y imply that limit solutions will satisfy any of the

above- men,_oned entropy conditions. Some restric_om on the numerical flux are required.

The most general cla._ of scalar flux functiom known to yield convergent approximatiom

whose limit soluziom will sati.dy all entropy conditions, for general scalar f(q) is the dass of "E"

fluxes, introduced in [18].

A consistent sdzeme whose numerical flux k_ : satisfies

age (qj-q/_I)[hj___ -f(q)] s 0 (1.4)

forall q between qs-t and q/, is said to be emE flux.

Other equivalent defmitiom are given in [18] and [2/].

L_ortunately these uahemes ere at most first order accurate [18]. We shall use three Ix_nt

E schemesas b_d_ blocks for our higher order accurate TVD schemes described in the next

sections. We have already done this to get convergent, second order TVD sd_emes, approximat-

ing convex scalar conservation la,m in [20], and [21].

Examples of three-point E schemes include three-point monotone schemes, e.g. Engquist-
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Osher's [33], _'s [9] (which is canonical, see [18]), or enm_ fixes of Roe's scheme [_].

These arcd_ned againattlmend of tl_ section.

Together with an emtropy inequality, a key esl_aate involved in most ccrnvergence proofs is a

bound on the variation. For any fixed t > O, the x variation of scalar Q_(x,t) is defined as

If we can write for every

B(Q_) = Z IA.qjl

D l_O
1- T

then it is easy to show, [21], using an argument of [25], Omt for t1 > t, m O.

(1.5a)

(I._)

(1.5c)

B(Q_,(.,tl))s B(Q_(',,_ (1.6)

Harten in [13], pointed out for ¢0q_lidt methods, that this decomposition could lye obtained

for schemes which arc higher than first order accurate..See also earlier work by van Leer [28]. In

section V we obtain a more general criterion than (1.5), guaranteeing that (1.6) is valid. We shall

use criterion (1,_ here to get very high order accurate, "l-v'D schemes of the ty]_

with

which are P.m- 1

W qJ= -A÷ =

c _ = C(qj._..... qj_.._)_.o

=o(q/,.m_,.....qj_.)=-o

order accurate, except at isolated critical points, for 2 _ m _ 8.

(1.7a)

(1._)

(1.vc)
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In addition to (1.6) we have a maximum lm'inaple for (1.7)

m/nq_(0)-:q:(O":maxq10), 0.S)

foreach j andall rz0, [21].

Moreover,in[21],we alsoshowed a IL_/ton thepossibleaccuracyofaFFroximat/onsof type

(1.17),for m = 2. A glanceattheproofofthat_ (2.3)shows thatthe resultisalsovalid

forgeneralm, namely:

AP1_ox/mat/on(1.7)isatmost fi:storderaccurateatnonsoniccriticalpointsof q, i.e.

points_"atwhich/"(_, 0 = _.

Inspiteof th/slocaldegeneracy,higherorderaccuracy,combined withTVD doesimprove

perfcn'mance, even when discontinuities are I:n'esent. This is shown numerica]]y in ref [5] and else-

where.

As promised,we now presentseveral useful three-point E fluxes.

Engquist.Osher

C__ov

:(q/,q/-1)= Jom/n(f(s),0),_,

+Jo m_v (s),o)_+ f(o)

ha(qj,qj__)= n_mf(q),ifq:__< q:
qJ-_.q.,j

(1.9)

(i.io)

= maxf(q),ifq/_,> q/
qj-L_ 't='ll

Roe withentropyfiz,a_ro:_aafinga convez f(q) i.e.,f" > 0 withf'(q) = 0 ata single

son/cpoL,:t_'.Define
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ull.l_

_%,qs-1) = ½[(t'%) + .t'(qs-i)) -

qs-l < 8 < qj,
then take any IApsc_tz function so that:

_-qs] (1.11)

_%,qs-'.) "=/1_)

e.g. [4], [_,], for various fixes of this type.
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17.Secondand ThirdOrderAccurattTVD Schemes

Which Use a Five-PointModule

We begin by eze_plif3dng our general theory using a very important and convenient class of

schemes. We shall _te the scaler cons4_a_ion law by a family of five point, semi.

discrete method of lines, and TVD approximations.

Let h(qj,._,qS) be the numerical flux corresponding to s three- point E scheme. Next we

define

c_l_" - h(q/_.1,q/)- f(qj)
(2.1a)

= f(qs+O - h(qs÷1,qs)
(2.1b)

We can then write

These new quantities dr- and dff denote the differe:_ in flux across the waves with negative

and positive velodties respectively in the interval under consideration. The subscript

denotes the interface between two cells whose cenU'oids ere denoted by grid points with subscripts

j and j÷l respectively. Thus df_/,._, denotes the difference (taken from right to left) in flux

acrossalltheposit/ve(forward)breakingwaves at thecellinterface ., etc.

A generalsemi.discreteconservationform approo,_mationto(1.1)can be givenas

q' ÷ Ax = 0 (2.2)

• 11-



Here the quantity / is the repreumtative for ntmm'i_l flux.

With th_ notation the nttmerical flux of one new family of TVD u:hem_ can be repreumted

by

(2.3)

for
1

o<=_< _-.

The superscrilm shown over the

follows:

(2.4a)

(2.4b)

(2.4c)

denote flux-limited values of d]', and are oomputed

/=_j+_ = rain rood _, b

_j ====o_

(2.4d)

In the above, the operat_ "rain mod" h defined by:

rainrood[za] = (s_ x) max(O,mintzlassnx)

is a "compression" parameter chosen in the range

- !2 -



i
1<b_: I+ _-=brn u. (2.6)

The case a = 0 alsoyieldsaTVD scheme,but thisone isnot t_nedissipative,so steadystate

solutionsaredifficulttoobtain.We recommend thata be positiveinallapplications.The diss/.

pationinour generalalgorithmisan increasingfunctionof a.

The non.TVD orunlimitedforms ofthesdaemesinthenew familycan be obtainedby

replacingthe (d)0_v)termsappearingin(2.3)withthecorrespondingunlimiteddf values.The

truncationerroroftheunlimitedform (up tosecondorder)isgivenby:

It is interesting to note that

of h.

rE = ({-_,)(az)2a3a-_'/('0 (2.7)

TE is independent of the particular E-scheme used, i.e. independent

Particularschemesinthenew fam/lymay be chosenby pickingvariousvaluesfortheparam-

eter a. Some specialcasesaresummarized inTable2.1.The TE shown inthelastcolumn

corresponds to the unlimited forms. The names given to the TVD schemes are based on the

names used in the literature, e.g. [29], for the corresponding unlimited schemes.

Value of a Name of TVD Scheme

1/6

1/2

1/4

1/8

0

113

Third-Ord_

Fury Upw_

Froram'$

Low "rE _-or_r

Central

No Name

b,_, 2rid order TE

4 0
_3

2 -I/3(hx)2 _" f(u)

_-_f(u)

5 _-(Ax) 2 a3-_ f(u)

I c33

® __(_,)2._.f(,)

5,/2 _(Az) -_ a3_- :("1

Table 2.1 ParticularCasesofNew FamilyofTVD Schemes
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Serni-disc_,.-te notions of TVD sdu_2_ only show that, when a suitable time _tion is

chosen, the overt'allalgorithm is TVD, hence has a convergent subs_que_ as _t - 0. See e.g.

[21]. There is always a CFL resuiction on explicit schem_. For simptidty, we consider the expli.

citscheme givenby forwardEuI_ timediscretization:

÷ --o (2.8)

Th/5 is only first order accurate in time.

As part of a general result Theorem (3.2), it follows that the unlimited vers/ons of (2.8) are

all unstab/e for any CFL number k = A-2-t However, Table (2.2) gives stab/e time steps for the
A._"

flux-limited versions for b ffi brim.

The general condition for (2-8) to be TVD is:

j

and for general b it is

._ 4a if b - b_. (2.9a)
1+4a

._ i (2.9b)

l+_+b(2-a)

-14-



Valueof a b_ml

1/6 4 2./5
1/2 2 273
1/4 3 1/2
1/8 5 1/3
0 ® 0

1/3 5/2 4/7

TABLE 2.2. Stable Tune Steps for Thh New Cla._ of TVD Schemes.

In equations (2.4a) and (2.4b) the flux.limited values of _ are defined. This value is _nn-

puted in some interval by cornpa_g the original uulimited value with its neighboring value, after

that neighbor has been multiplied by the "compression" parameter b. Assuming that the two

values being compared are of the same sign, the "rain rood" operator chooses the one whose abso-

lute value is the smallest. If b > 1, the flux.limited value returned most often will be the unlim.

ited value itself. Thus, for most grid points (away from high second-gradient regions where the

unlimitedvalueofslope d/ can be much greaterthantheunlimitedvalueof theneighboring

slope), the TVD scheme is identical to the mrrespondin 8 unlimited scheme. ('Having a larger

value of b enhances this property.) At critical points of the fluxes, the neighboring values of df

can be of opposite sign. There, the "rain rood" operator renu'ns the value z.-ro. Thus, away from

maxima, minima, and points of d/scontinu/ty, the TVD scheme reduces to its corresponding unlim-

ited scheme.

We next present a class of u:hemes having the same five-point band width and which are all

d',ird-order accurate in their unlimited versions. I-Imvever, the flux limiting is a bit more far-

re3chin_ than in the a class deemed above. This may cause a _light deterioration of e_cura.,-y

when we use a coarse grid to approximate solutions having many critical points.

• 15 -



The fluxisd_ed by:

(2.1@

i B)(a_j.3)")- (_"- _.

+(T

1 Asain, B = 0 corresponds to a non.dissipative, _utral differ.I-Icre we rake 0 < B "= -_-.

ence, but TVD scheme.

The flux.limited values of oF are def'med through:

T
(2.Ila)

(2.11b)

(2.11cJ

- 16-



(¢_:..)_-_>- rainrood
-V

In the above, the operator "rain rood" of three ClUantitics is dcfmcd through

(2.rid)

(2.11e)

(2.110

rain rood[_,y,z]--rainrood[rainrood[xj],z], (2.12)

This is easily seen to be ind_dent of the order of z j,z. Again, b is a "compression" parame-

ter. I-_e it is chosen in the range.

1 < b -: 3 + 12fl (2.13)

The non-TVD or unlimited forms of these schemes are obtained by repla_n 8 each (df)¢v)

term by itscorrespondingunlimitedd/ value.The thirdordermmcation errorof theunlimited

form coincideswiththedissipationand isproportionalto [3.See theproofofTheorem (3.2)

below.

For 8 = 1/12, this scheme (2.10),(2.11) coincides with (2.3),(2.4) for a = 1/6. The limit-

Lugsimplifiesa bithere,sinc_thecoefficientsof(2.11c)and (2.11d)vanish.For thisreason,we

preferthisscheme to any of theotherthirdorder "[3"schemes.

Finally,we ccnnputctheCI_ number guaranteeingthat(2.8),(2.10),(2.11)isTV'D. The

results are:

(2.14a) (for general 13 satisfying (2.13)

[ ,]At d'_:*" 13 7
-- _ " < +_+ -30

'_-q: _ b(--ff

• 17-



(2.14b)(for b = 3 + 12_ = bma=)

• 18-



I_. _rgi 2m.! anti 2m-2 Order Accuratt TVD Sctwnwa

Which Use a 2m+ 1 Point Modu_ for m _: 8.

We use thenotationoftheprcviou.ssectionto appro_m_tc (I.i)viaa familyof schemesof

thetype(2.2)where:

m-1

IC_/. 1 (k)
(3,z)

ra-'.

-" Z
kg-m._- '

H=re m is an integer, m _ 2, and 13 satisfies 0 < $< (The upp_ bound on 13

could be relaxed consic_ably, at a cost of complicating our calculations. We shah not do

here.) The binomial coefficient is c_t'med for A,B integers with 0 -¢ B -= A, as usual:

The coe_deats

_B) = A�S:(A-a):
rt{ .,wvk ,_'k can be defined recursively by:

1
vg = _ (3.2b)

and

v_'= -v_k," k = l,...,m-1 (3.2c)

v-k for k = 1,2 ..... m-l,vk = ,,, +(_l)k m-+-I (3.2d)

- 19-



An alternative direct formulation comes by defining:

whfrc

m-1

v_'= _x 7=-v_-k _'or t=l .... ,m-l,
l"t

(3.3a)

and

J=t* _.
(3.3b)

A_"

1
(3.3c)

W: = v'_,for k = ±i,+2 ....,:l:(m-1), (3.4a)

1

We define the flux limited quantifies as follows. For each j:

(3.4b)

= , t._,b_j_t.l.2 forallk with 0 _ t _ I.
(3.5a)

(3.5b)

o mod I (3,_c)

(3.5d)

= nuTn nuTd ,, (3.5e)

-20 -



The compression p_am_ b isallowedtovarybetween:

(3.50

1 -!0<,<
We can now state the following:

(3.6)

Theorem (3.1)(be,,,scheme_)

"l_escheme (2.2),(3.1)-(3.6)has thefolI_vingproperties:

(a) ItisTVD and satisfiesthemaximum prindple.

Co) For any _,0 < B s m , and m s 7, b can be takentobe greaterthanone. For

m = 8, there exists [3o suchthatfor0 < Bo _:_ s , b can be aga/ntakentobe

greaterthanone.

(c) The unlimited version is (2m-1)-order a_ttrate and 2m-order dissipative, with trtmcation

error and dissipation both proportionaJ to 13. Thus, for b > 1, the TVD scheme will retu.,'n

(2m-1)-order accuracy except at critical points, or ix3ints of discontintdty, where it is form_y

only fh'st-order accurate.

(d) The simpleEulerforwarddifferencetimedisa'elizedversion(2.8)isTVD ifthe CFL restric-

tion:
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- -

is valid.

+_ 1 +13
j.22y(2y-i)

(e) This same forward difference time-discretized scheme, without flux limRers, is linearly

unstable for any CFL number.

TI_ theorem will be proven in the next section.

These beta schemes give one more order of accuracy per 2m+ I module than the a/pha

-schemes d_f'u'_ next, except for a spedal case ,_ = 2B = 2 when they coincide.

Again using the notation of the previou_ section, w_ approximate (1.1) via a family of

schemes of the type (2.2), wh_e

= h(qj+_,q/)+ Y. [_'-: + (-Z) k
- _--m+2 t J_'_'J

(3.'7)

+
km --re't" i

the upper bound on a for mnplidty only.) The coeffiden_ ,._-_- .m-_-t ,v-t were def'med in

(3.2),(3.3),(3.4), and we al_ define

m-i =0= m-'.v_,..: _.,,,_: (3.8)
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The flux limited quantities are defined precisely as in (3.5), and now the quantity b is allowed to

vary between

0 < b < _,-: (3.9)

J-2

(where the sum E (2j-I) =I ffi O, by definition.)
1-2

We can now state the following:

Theorem 3.2 ("a" schemes).

The scheme deemed via (2.2), (3.7) has the following properties

(a) It is TVD

(b) H m< 8, then b can be taken to be greater thanone.

(c) If a = 2/m , then this scheme b identical to the "B" sche_ for the same m,

_th _ = v,,,C_) -_. _ its_.r_=ted_mion is 2,,,-1-o._. accurate.

(d) For all other admissible values of a, the unlimited version of the scheme is

2ra-2 order accurate with 2m order dissipation, which is proportional to a. The trunca-

tion error is equal to

TE = (-1)" [ct- 2/m(_ml-l](Ax)2=-2[_.x J f(u),

(*)

and is thus independent of the choic, of h, the E flux.

The simple Euler forward difference time discretized version, (2.8), is TVD if the CFL res-

triction:

-23-



j-2 2j(27-i)

___ _ _--7)]21._ 2j-1 a

m-I 1 ] -Ij.2 2j(2j- 1)

(f) This same forward diffcmnc_ time discretized scheme, without flux limitem, is _nearly

unstable for any CFL number.

This theorem will be proven in the next section.



IV. Proof of Main Theorema

Letthe k_ power of the sh_ operntor be d_fined as

Define the central difference operator for k=l,2,...

We shall use the following well.known formula, sea e.g. [14].

tJonwith q: = q(./_) = q(x). Th_

Let q

(4.1)

be any smooth fun¢.

qx(x) = -2 _ (-1)_(ml)_
_-l (m+k)[(m-k)I D°(kAx)q(x)

(4.2)

2(m[)(m+l)[ ( a 3_,÷I

+ (-I)- (_,+2)I (_)_[_'xJ q(x)+ o((_))_'I

Let C _' denote the operatorfrom which uniquely defines 2m_ ord_,r

based on cen=al difference o_atcrrs using a module (-re,m). We de,me

accurate differencing

C z''= -2 _'. (- 1)k kAx) (4.3a)

where

m-1

_,l-- m

E (-I)/': k
/,,ma_(-L.,_÷_.)

For our putlx_es, a better formulation is

(4.3b)
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C _' = D_.S -I + (4.4a)

with

_X v;'O.(A.S'-t)
kin--m* _.

m--l

v;' = XX_', k=l,...,m-1
J,=i

(4.4b)

1
/N _ m

v° 2
(4.4c)

v'_= -v'L'_i,k= - l,...,-m+ I

Itisfairlysimple toverify (4.3)and (4.4).

Next we recognizethat(4.2)impliesthattheoperator

(4.4d)

is a 2m-1 order

for the operator

0 with stencil (-(m-1),m). Moreover, the same is trueapproximation to a'_x"

c_,_ X;_,(_)_-_D_,_ = (4.6)

This operator is easily shown to be unique. "f'nus, we have the important result:

+ Ax.O.)

This translatesto (using(4.4))

(4.7)
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+ .-2 2m-3

m--1 __

which implies

-1 2m-2 -t k

for k= 1..... m-I. Thus we have proven(3.2)(gain _fm/ng v_ = 0.)

It is now easy to see that

(- 1)_v_' > 0, for k= 1,...,m- 1.

Next we apply the identity (4.8) to the grid function defined by:

(4.9)

(4.10)

I - (-1)/ = _q_: for j ;_O.
q/= 2

(4.11)

This leads us to tim useful result:

m-1 m-2

E (-ilk_r= Z (-11_'_'-_+ i(i'-i),

thus

m = 2,3,... (4.12)

m-1 1 " 1.
(-I)kv_ = Ti_=2 m=2,3...t-1 (2j I)'

(The fact that the series above diverges as m - m earplaim why brnax .(3 as m - _.)

We may rewrite:

(4.13)

m-i

c--o.+ :z
k,.-m_"!

This,togetherwith (4.4a) givesus the identities:

1
2

(4.14a)

(4.14b)
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Next, we claim thatwe can rewrite:

1 _D ,

. t--m','i k _ V)
(4.15)

_z :-T "-

We verify this by rewriting the fight side above as:

O.h(q:,q:_O+ _, V:D_(,__f(q:))
kw,-m_l
k¢,O

I [-k(q:,q:-O++ _-0. /(qj_:)

+ f(q:)- h(qj,qj__)]

= oc(_f(q) +
,_,"- m","3.

:'_'0

= D..$-"f(q) +

re--1

v_'O_.(A_/(qj))= c_f(qj)
k_-m÷ l

We have thus rewritten the 2rod= order, nondiss/pat/ve approximation, C_,

arbitrary E flux, in a form convenient for the purlx3se of making it TVD.

Next we note that the approximation to

term_ of an
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qt =0

of the form:

at
(4.16)

m-1

k..1-m

is dissipative of order 2m, and accuxateof order 2m-1.

sat_fy

Its Fourier _an._orm is easily seen to

-_t _(_) = - _-[2-2 cos(_ _)"]4({;) (4.17)

Thus, for a.,!arbitrary E flux, we may write a 2m-1 order scheme, with 2m-order Oissi.

pation, approximating (1.1) as:

a
T;qj= +

(4.18)

=- + _T
k_-m-¢- l t.

2m-2

_'1- _. ,,,-i 2m-2 ]

Thus, we have constructed the unlimited version of the numerical flux, _i_' of (3.1), hay-

Lag the relevant desired properties.
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Forconvenience,we require

(4.19)

We daim that this is tnu_ for all k, if it is true for k=m-1, orif

_: = Iv,,__l. (4.20)

We shallprove thisusinginductionand (4.9).The resultisobviouslyalwaysvalidfor k = m-I.

Suppo_ (4.19)isvalidforall[kl< m-1 and allnumbers up to m. Then we have,fi'om(4.9)

+2 -l 2n,
(4.21)

_.k +2 -l

We shall show that the last expression in brackets above is always positive.

For k = O, we have:

For k = 1, we have:

1 1

2 (2m-1) 2 (_n+l)
>0

2(m+ l)(2m- I)

m-1
+

2m(2m- I)
4-

2(,n+1)(2_+1)

1> (m-l) "2m (2m-l) I]2(m+ 1)(22n- 1) > 0
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For k > 2, we have:

1 (m-x)...(m-k)
2,. (_-x) (m+_-x) ... (re+l) , 3(__k.,) _ _-_- +1-

m2(2m - 1) ]

(m2-_(2_+1) i

= (2nt)(2m-1) (m+k-1)...(m+l) [2m+l + [_-_--_j_-.-_j >0

The daim b now prove_.

Next we apply the flux limiter to (4.18), arriving at the _l_eme (2.2), (3.1)- (3.6). To verify

that it decrea_ variation, we rewrite it as Equation (4.22):

.,'-J-L ;--_'J

- D__
m-:

=s _o._,- %___,,

is TVD and satisfies a mum principle if, for each j:

cj._, _._ - o (4z3)
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s_ _.g. [21].

Thus, we n¢_ll_:

m-1
]

(4.24a)

m-1

(4.24b)

In (4.24b), we estimate the right side, udng definition (3.5a, b, c), and recalling that the

sign of the _h coeffidemt it (-1) k ff k :- O, (-1) _.1 if k < O. Thus we need:

m-I

1 _( )) (4.25)

+

-I

f 2.-2 )'h,((-l)k_Iv_'+ _ tm+k-lJ)
;t-- - m"¢.!

Or:

-_ + _ z2 (-I)_7b.

or(_mg (4.13)):

(4.26)

b_:
" 1
X2_-1
k-2

¢:

" 1
X2k-1
k-2

(4.27)

which implies D , _ O.
.t-_
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A similarargumentshowsthatC. _ > 0 for _e samevalueso_

A simple exercise on a pocket calculator shows us that

b°

_ z -.9_5z (4.2sa)
j. 2j-i

I _ 1.0218 (4.28b)
Z2j-I
j-2

9

1 ~ 1.0809 (4.28c)
Z2j-I
)=2

It is possible to choose 13< so that b > 1 because -_- > .0218. If it were

1
possible to do this for m = 9, we would have _ > .0809, which is false.

Thus, wid'Fmour constre_mts,15thorderaccuracy(in17 points)isthehighestpossible.

Next, we obtain the CFL restriction for the explldt forward-Euler time discrmization, which

we write as

(4.29)

The precise restriction for the scheme to be TV'D, in addidon to (4.23) is, for each j:

],D n , <

(s_[13])

We thuswish toobtainupperbounds for

(4.3o)

(4.31a)

•33 -



and

(4.3Zb)

A routinecalculationusingthedefinitions(3.5),notingthesignsofthecoefficients,givesus

the result (d)inTheorem (3.I),modulo provingthat

m

v,"= -Y_ 1
" 1,.22j(2j-1)' m _ 2. (4.32)

For m = 2, (3.2a)gives:

Assume that(4.32)isvalidup to

v,_-: = v F

12"

m. Then, (4.9)for k = I, givesus

2(m+:)(2(m+:)-:)

Finally,we checkthestabilityoftheseline.m'ized"13"schemes,withoutflux limiters,using

explicit forward Euler time diseretization. We linearize about a constant state _', st which

f(q-)=a _0.

This is:

We notethat h isan E flux.In [19]itwas shown forsuchfluxesthat:

(4.33)

.34.



ho(_,v-)> 0 > h1(_',q")

Ifequalityholdsforbothabove,thenconsistencyimplies

o = ho(_,q')+h,(_,q-)= f(q-)= a # o.

which is a contradiction. Thus we may define the positive quantity

s = _(ho(_,q'3- h:(ff,q'))> 0

The amplificationmatrixfor(4.33)is

for

aAt i(_
At

-_-s(2-2 ¢)m= A(_)I - _ + c(_): _':) cos

-= _ _ < _, C(0) _ 0, and C(_)realanalyticforreal_. Then therelation:

[A(:)]2:l+a2[At|2._('_ 2At 2_ I)
-_- _-- -_-s_ + 0(__" -_1.
( )

which implies:

(4.34)

(4.35)

, At 0(_;_,_i)a'-_ _ 2 S__-2 + as I_[_O.

Thisisa contradiction,sincem >"2.

Theorem (3.I)isnow proven.

To consmxctthe "cx"schemesofTheorem (3.2)we firstconstn_ a dissipativeapproxirna-

tion to q, _- O:

: m-! m-,aqj (-I)":A,. A_ D_qj, for ot>O
at

(4.36)
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The ol_rmor on the right above has module (-re,m-I), and its symbol is:

a(-l)" 2"-l(cos{-1)'-z(1-e -'c)

=a2=-I[--(1--COS_)m--i(1--COS_)m-"Sin_]

Thus, this operator is dissipative of order 2m and accm'ate of order 2m-2.

rewrittenas:

(4.37)

It may be

_q_._= _2 (_l)i_+_31)D_.(A.Sk_lqj)
at Ctt._m. 1

_milarly, the operator on the fight side of

(4.38)

has module

= (-l)m-laA_-IA_-ID.q! for a > 0,
at

(-m+l,m), and its symbol is:

(4.39)

a2m-z[-(1-cos[)" + i(1-cos[)'-_sin[]

It is again dissipative of order 2m, is 2.,n-2 order accurate, and it may be rewritten as:

(4.40)

_q: a (-I)_(k+m-2) *k _js.= _I ( _-3 _D :A._S k-l- _
at t--re'*'2

(4.41)

Thus,we may use (4.15),(replm:ingm by m-l), (4.38)and (4.41)toobtaintheunlimited

"a" _itettte.

a
T;qj: + (4.42)
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Using (4.2), we see that the leading term of the truncation error of _e right side of (4.42) is:

2{m-1)I roll _-, _-_r_ = (-I)"a- (_)I (_) % :/(q)'

which is ind_-ndent of thechoiceof the E flux, h(qj._!,q/).

(4.43)

For convenience, we, want (form :) 2):

We daim that this is valid for all these k if it is valid for k = m-2, or if

(4.44)

Thisistrivialfor m = 2. For m > 2, this reduces to showing that:

(4.45)

"'-'" "_"'I,=(_JJ-'I_"Z2,J"_l,,rl, k = o,1....,,,,-,. (4.46)

We obtaineda strongerinequalityin(4.19),(4.20),sothevalidityof(4.44)from (4.45)isobvi-

0125.

Next we applythe fluxI/mitersto (4.42),arrivingatthescheme. (2.2),(3.7).To verify

that the scheme decreases variation, we rewrite it as Equation (4.47):
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_-I + 1 i_ 2:.-3

- D__

: c _o.<,,- __:._o-<,,

We must _how that(4.23)isvalidforthis_me. Thus we need:

(4.4_)

In (4.48b), we _te the ng_t si_, _g llla_f'tt_tion of v_" from (4.4b), (4,40, and

(4.4d). We rec_ thai ",_ek_ cc_ficic'ni has sign (-I) iif k ;_ 0, (-I) i': if k < 0. Thus we

(4.48b)

need:

-38-



(4.49)

,.-2

+ Z
km-m_-i

_ t--!,,-_ 2m-3

Using (4.13)givesus:

(4._o)

b < (4.51)

The same inequality establ/_hes (4.48a).

Using (4.28),we seethaiwe cantake b > I for m -':8, butnot form = 9. Thus 14th

Next we obtain the CFL restriction for the explicit time discre'&zation (4.29), which requires

inequality(4.30).Thistime itinvolwsob*dtinm8 upperbotmd$ for:

and:

m-!

m-2

(4.52a)

(4._2b)
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A routine calculation using the definitions in (3.5) and (4.32), and the signs of each coeffi.

dent, gives us result (e) in the statement of Theorem (3.2).

F'Lually, we check the stability of these linearized "or" schemes. We again linearize about a

constant state _', at which J" (q-')= a _ o. The resulting scheme is as follows in Equation

(4.53):

We also know that:

ho(#,__"0 > h_(_',_

withatleast one oftheseinequalitiesbeingstrict.

The amplification matrix for (4.53) is:

a, _,__]I- _ _[{+ c(_)

At 2m-_(1--coa{)'-1[ho(_,q")[1-cos_ +i sin_]
-_,

-h:_,_[1-cos{-i_ {]]

The rest of the proof goes as in (4.35).

Theorem (3.2) is now proven.

(4.54)
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V. A More General Claaa of TVD Schemes

Given a conservation form approximation to the scalar vers/on of (1.1) of the type:

wh_fe

Suppose we can rewrite

subjecttothefollowingrestrictionsforeach j:

(5.1)

(5.2)

Ark-l) (5.3a)

AJ_-_)aAf_)i for -k+1_v<k-1, v@0/-_-
(5.3b)

(5.3c)

Then we have the following:

Theorem (5.1)

Given an approximation to (1.1), of th._form (5.1), satisfying (5.2),(5.3), then the scheme is

TVD, i.e

E I_-qT""l < E IA_.q:l
/ /
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Proof.;

Using=, by now, standardargument-e.S. [I], [131and[28], we first compute:

A(k-1)
(5.4) A+_ +I= X j+_ A._ff_.2 - XA(-_) A+__ 2/+_"

+), I-
v==-2÷I

vtO

Inequalities(5.3a,b,and c )were cho_n so thateachcoef_dentofA+_+_ in(5.4)isre:m-

negative.Thus we may taketheabsolutevalueofbothsides,obtainingtheinequality:

(5.5)I_+_'*_IIA._I+ x j._

+X
v"-k+l t s*T S+T)

2-I

We sumth=imquality(5.5)ov= j,th=resultfonows.

Next we approximate (1.1)vias _mi-disczmemethod (2.2),where

(5.6)
2-i

satisfy(5.3aand b). Then we have the following:
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Theorem f3.2)

Given An _:_'ozimation1:o(1.1)oftlmform (2.2),sa_yiag (5.6)and (5.3arandb),then

the scheme is TV'D, i.e.:

a'-;"_3I_...qjl< o
J

Pro¢_"

We follow an idea of Sanders [25], used by us in [21]. Let

xv._.(t)= sg,, _,.qj

Then

_lzX.qjl = e
v

(5.7)

= a_-_) -A_-_'>Xl._ _-qj-k/.3. Xj._ dl.ql._, j.,._ -2

+

+ Is.qjt[-a °l +a'-];]j.1 j. j

Becauseof (5.3aand b),alltl_coefficientsof X/÷_ di.,.ql.,.,,for v _ O, arenon-negative.

ThuS, we have

a _-I [_A{v) +*¢v- ¢')] (5.8)
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Summin8 this inequality gives us Theorem (5.2).

We hope that this very general approadl to the common of TVD schemes will lead to an

even wider d_s of _eful high order accurate methods. We shatl discuss this in a future paper.



Vl. Ex'lensionatoHyperbolicSystenuofConvey'rationLaws

We shallapproximatesucha system(I.I),usingthescalarTVD al:_roximationsdeveloped

insectionsEland HI. The key toolinthisc_ns_crn istheuseof a nonJ_earfield-by-field

decomposition,which effectivelydecouplesthesystem. Severalsuchdec_mposifio_,.sexist-

Godunov's [9],Osher's[22],and Roe's[23].For simplicityofexposition,we shallonlyusethe

lasthere.

Although theformalversionofthelastmethod iswellknown toviolatetheentropycondi.

t/on-i.e.tohave stableexpansionshocks,itispossibletoremove thisdifficulty,.-.g.[19],by

changingthedifferendngslightlynero-sonicpoints,pointswhere _(q) = 0 forsome eigenvalue

k. What we shalldo herecan be viewedasan extensionofsome ofthework in[13]and [21]to

higherorcl_', non-oscillatorymethods. For s/mplidtyof expos/tiononly,we shallignorethe

entropydiffic_ty.

C_ven two states q/,q/+l, Roe [23]d_finesa matrixA,,I satisfying th-., e_:l,aality:

ffq..O-f(q/)= a (6.1)

Thismatrixissupposedtodepend continuouslyon qj,qj.,.:,tohaveonlyrealeigenvalues,

and tosatisfy

z

Such a matrixexistsifa convex entropyexistsforthesystem[11].See [23],[24]forsome

spec/alpropertiesofphysicalsystems.

Let theeigenvaluesof A.: be denotedby k:_'):,P = 1....,n. The correspondingleft
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lft')_ " r_), -- 8_ -- 1 if p -- q

=O if p_q

Then we may write

p-1

(_.2a)

tt

f(qs-')- f(qs) = Y_x_,t.a_'). ,.o,).
• g..._ g._ J..._.

p-! 2 2 .

Eel

(6.2b)

x" = max(x,o) (6.3)

_- = n_ (_,o)

Next we define Roe's first order numerical flux:

1 1 .
h(ql.,., ,q./) = -_(,f(qj. _ ,+ f(q¢)) -'_Al._ l(q¢ _-qj)

(6.4)

$43

. p-l.

(6.sb)

Now we use the notation of section 1TI to oon._truct the high order non-osallatcrry scheme for

systems of conservation law_. Let *,.hequamities v_', lz_', b, 18, end or, be def'med as L,_t.ho_e sec-

tions. The numerical fluxes used to construct semi-diu:rete apptoximatiom of the form (1.7a) axe
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deemed via:

(_ schemes of 2m--1 order accuracy):

(6.6)

+

+
km-m*_

or

(a schem_ of _-2 or 2m-1 ord_raeccra.."y)

(6.7)

k---r.--: ( :'V",t',l

+ _-2 '_a 2m-3 ( "lI_)

Now we d_fmc these vector v_ flux limited _fifies as foRows:

(6.Sa)

for all k with O_#k_ I.

K_. i]'°>= F, ,m m_ [(x,T,)-
-- I'2

(6.8b)
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(6.Sd)
/T

[_:._1_= Y._ _oa[(x72_1"_.,

for all k with O@k)-I

(6.8e)

It is easily seen that each of the )tmlimited versions of these semi.discrete algorithms does

indeedhave thedesiredaccuracy,forgeneralnonlinearsystemsofhyperbolicconservationlaws.

Inthe specialcaseof lineard/agonalizablehyperbolicsystems:

:(q)=__=G:' for_ _+½,

we have a great deal of theory. We may now use the aO'!, to help measure the variation.
:'2

Define

N

IA.q:l = £ I_C)__t (6.9)
p'£

A scheme ofthissem/.discretetypeissaidto be TVD if

d

)
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therationee_:It_1below isdeflated_ i_ v_dueon theright:

We now have:

Theorem (6.1)

All the results of Theorems (3.1) and (3.2) go over word for word to the corresponding

scherne_ for system._ where the flux is def'med by (6.4) to (6.8), and where f(q) = Aq = A_q.

No theory of this type is known for nor2ine, ar systems. Th_ entropy condition was proven

for bounded a.e. limits of a special second order TVD type approximation, using Osher's flux-

decomposition in [21]. We f'md numerically that these schemes work quite well for compressible

invisdd gas dynamical flows at widely varying Mach number_. See [5] for the results of serial

auto.ca] experiments.
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VII. Resul_ of Numer_al F_erimtn_

We now discuss some numerical results. Some members of the new family of schemes were

programmed fora linearwave equationwitha sourceterm which drivesthesoludonto a _rne-

asyml_oticsteadystate.

q,+ q, - "_cos(_x)= 0. (7.1)

The semi-discrete TVD spatial differencing was combined with a family of multi-stage time dif-

f_encing (whichincludesthesimpleone-stagescheme shown in_I. (2.8)).The steadystate

exactsolutionofEq. 7.Iisgivenby

q(x) = s/n(_x) (7.2)

The I, norm of thedifferencebetweenthenumericaland analyticsteady-statesolutionswas ¢x_m-

putedand ispresentedbelow inTable (7.1)fora fast-orderaccurateTVD scheme,and forthe

TVD and unlimitedforms ofsome members ofthenew familyofschemes.

We now discusstheresultsshown inTable(7.I). The lastcolumn entitled"globalaccuracy"

istheorderofaccuracymeasured from thenumericalresults.The orderofaccuracyisfastmeas-

uredbased on the20 intervaland 30 intervalsolutions.Then, itismeasured basedon the30

intervaland the40 intervalsolutions.Lastly,itismeasured basedon the20 intervaland the40

intervalsolutions.The averageofthesethreevalueshave been enteredinthelastcolumn of

Table (7.1).The individualordersof accuracy(foreverypairof intervals)iscomputed asfollows:

letthe I.norm of theerrorforI intervalsbe denotedby E:;then,theorderofglobal

(correspondingtotheoverallsolution)error,O, isgivenby

z,,(es,) - o,(er)
O/:j,. = /n(J2) - /,'1(,/1) (7.3)
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where ./1 and ./2denotethenumber ofintervalsinthepairofsolutionsbeingconsidered.

Many factsstandoutdearlyinan analysisof theresultsof the5-pointschemes. The TE of

theunlimitedschemesisdose to thetheoreticallyderivedvalues.The globalaccuracyof theTVD

schemes

I, norm ofError

F'u_t-Order Accurate Monotone Upwind Scheme;
r t.ord= t0.1496 I 0.1013 10.07 2 I

"llnh-d-order Scheme, a = 116,8 = 4;

Unamited o.o(rz4_6 I 0.000744 10.0003162 (=):_';TVD Limited 0.004212 0.001348 0.00076338 (Ax)Z_:;
1

FullyUpwind Scheme,a = _- b = 2;

Unlimited I 0.019717 0.0089566 0.00_091 (&r)_95;

u_t=_ 10.017874 0.00784 0.004756 (_u_)'__[

I b=3;
Fromm's &::hem=,ct= _-,

Unlim/ted 0.005685 0.00239 0.0013221 (_u02.:0;

TVD Limited 0.00862 0.002773 0.001554 (&r)2"3;
I

Low IrE Second-Order Scheme, a = _,
5

b=5;

Unlimited 0.003125 0.001256 0.000681 (_)2.19;

TVD Limited 0.006767 0.0014528 0.001058 (&_)2.52;

TV'D Central Difference Schem..., a = 0

S_ooth_d I o.ol0oo06 1 0._5107TVD Limited 0.02655 0.00559

Urlnaraed Scheme, ot :

U_L_ted 0010"_09 l 0._5_,TVD Limited 0.0111646 0.0045198

b>>l;

I 0.0025560.0080886 I (_u0:7;

± b=5/2
3'

I 0.00257330.00268 ] (Az)z°°;

Table (7.1) Error Computations for some of the New 2rid and 3rd Order TVD Schemes

shows some variation.Infact,theglobalaccuracyoftheTVD schemesbasedon Frornm's

discrefization and the Low TE Second-Order discretizafion compare quite favorably with the global

aco.zracy of the Third-Order TVD scheme. In the case of the first two, the TVD scheme has

better accuracy than the corresponding unlimited scheme. In t_he case of the Third-Order scheme,

the accuracy suffers by going to the TVD form. When we consider the ma_,itudc of error as
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opposedto theorder of ac_aracy, the Third-Order u:heme comes out ahead of all the othem. The

global order of accuracy of a TVD scheme depends on a number of fa.._om, such as the number of

maxima and minima, the ratio of this number to the overall numb_ of intervals, implementation

of boundary conditions, etc. Thus, the global accuracy of the TVD and the unlimited forms can

be different. On the other hand, the fact that the Third-Order scheme is indeed third-order accu.

rate in its unlimited form and that it consistently has a lower magnitu_le of error seems to imply

that the Third-Order scheme may be the most preferable of the lot. The other seared-order

schemes having a low truncation error also suggest themselves as schemes which must be given

serious consideration. We do not recommend the use of the unlimited forms of the "FVD schemes

whether the order of accuracy of these is higher or lower than the corresponding TVD formula-

tion. The errors of the unlimited forms are shown here o_fly for comparison. The TVD Central

scheme is also highly unreliable as shown by the fact that its error for 30 intervals was actually

better than the error of 40 intervals. This is due to the lack of dissipation. It has already been

mentioned that the orders of global accuracy given in the table are the average of three values. It

is quite im_ve to actually look at the individual values that are averaged. Some schemes show

a wider variation than others. The last remark here is that the Fully Upwind sdxeme, that many

researchers (including the present author_) have been using in the rec_t past, is just about the

worst of the lot (exduding the highly unreliable TVD Central scheme). In fact, to obtain the

same level of accuracy as the 20 interval solution using the Third-order scheme, the Fully L_dnd

scheme would need to use 40 intervals. The purely centrally differenced scheme shov,,n in Table

(7.1) as the Smoothed Central scheme (non-TVD central differencing along with a very small

amount of third-order fourth-difference smoothing) does not fare much better when compared

with the other third-order and second-order accurate schemes. The fifth order accurate, seven-

point scheme leads to the following results:

• 22 -



11

F£fth Order,

norm of Error

I 9
= = = T

_,._mited

TVD limited

crvD  rmted)"

20 Intervals

.0000489
.0148

.0104

30 Intervals
.(X)O(X)662

.00142

.00046

40 Intervals

.000001181;
.0014

.00056;

80 Intervals;

.000168;

Table (7.2)ErrorComputationfor 5thOrder TVD Scheme

II

Here the(TVD limited)"linedenotescalculatingthe I, norm oftheerrorcomputed onlyat

points where limiting does not occur - i.e., at which the scheme is of minimal order of accur_ V.

This measures the effect of pollution into high-accuracy regiom.

Next in Figures (7. la-e) we test the compressive properties of various approximations. We

solve q, = -q, with an initial Heavis/de function. The third-order ac_,a'ate, Fromm's, and the

low errorsecond-orderscheme appeartobe extremelyaccurate-asaccurateasthe scheme

favoredby Sweby in[26].The fullyupwind schemehas more smearing,whilethet'urstorder

accurate upwind method smears the prof'de excessively.
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